

# SRv6 Compression Technology and Standard Progress

Cheng Li

Senior IP Standard Representative

**Huawei Technologies** 

### Introduction



### **Cheng Li**

#### **Huawei Senior IP Standard Representative**

- 50+ IETF drafts, 16 + WG drafts, 1 RFC
- Currently focus on IPv6, SR, CATS, CUSP
- Author/Contributor of books

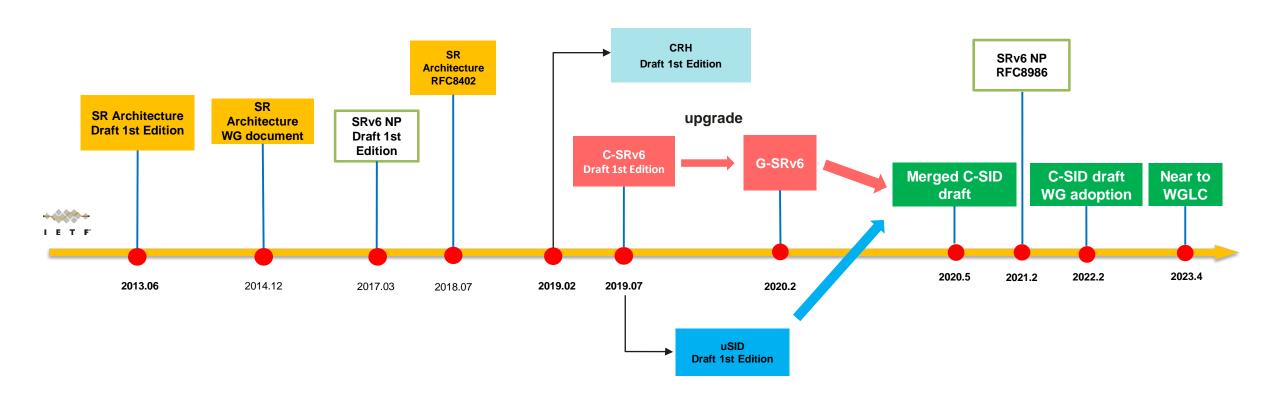









- "SRv6 Network Programming-Ushering in a New Era of IP Networks" (Chinese/English/Arabic)
- "Refactoring Network: Architecture and Implementation of SDN" (Chinese)
- Contributor of "The Definitive Guide to SRv6 Network Deployment" (Chinese/English)
- Recent Paper: "Application-aware G-SRv6 network enabling 5G services", INFOCOM 2021




### Content

- History of SRv6 Compression
- Compressed-SID(C-SID) Introduction
- Status of Huawei Implementation
- Interop Test Report
- Summary of Rapid Worldwide Deployment of SRv6 and C-SID



### **History of SRv6 Compression**

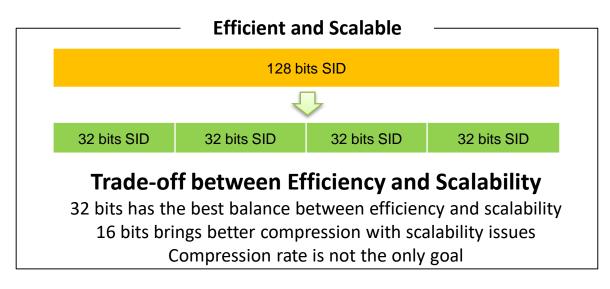


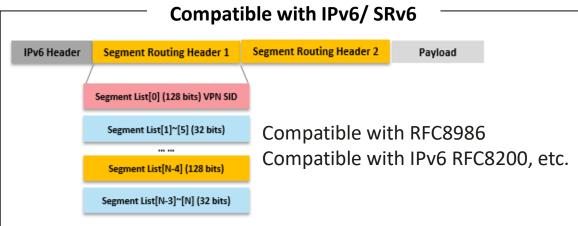
- 5 solutions were proposed, and finally merged into one single solution Compressed-SID (C-SID).
- C-SID draft[1] has been adopted as WG draft since Feb, 2022 and near to WGLC now.

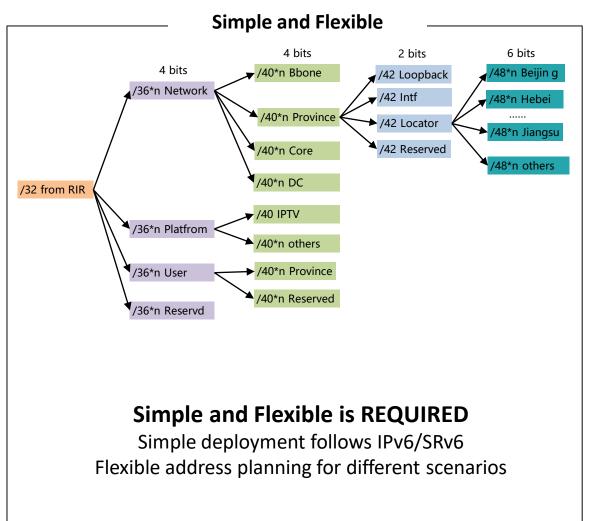


#### SRv6 Compression: Converged and Adopted by WG

#### **IETF SPRING WG**


- draft-ietf-spring-srv6-srh-compression(C-SID) is accelerating to WGLC.
- C-SID draft defines flavors for the SR endpoint behaviors, which enables a compressed Segment-List encoding in the Segment Routing Header (SRH).
  - Replace-C-SID Flavor a.k.a G-SRv6
  - Next-C-SID Flavor a.k.a uSID
  - Combined Next-and-Replace-C-SID Flavor
- All flavors are defined under SRv6 network programming architecture, similar to PSP, USP and USD flavors defined in RFC8986.
- Replace-C-SID flavor SID and Next-C-SID can be encoded in a single SRH for better compression and interop, and the interop test had been done in 2020.


SPRING W. Cheng, Ed. Internet-Draft China Mobile Intended status: Standards Track C. Filsfils Expires: 22 September 2022 Cisco Systems, Inc. Z. Li Huawei Technologies B. Decraene Orange D. Cai Alibaba D. Vover Bell Canada F. Clad, Ed. Cisco Systems, Inc. S. Zadok Broadcom J. Guichard Futurewei Technologies Ltd. L. Aihua ZTE Corporation R. Raszuk NTT Network Innovations C. Li Huawei Technologies 21 March 2022


Compressed SRv6 Segment List Encoding in SRH draft-ietf-spring-srv6-srh-compression-01

C-SID is the best solution according to Design Team's analysis result [1], which meets all the requirements of compression

#### Solution Design Principle: Efficient, Scalable, Compatible and Flexible







#### **SRv6 Compressed SID Introduction: Precondition**

#### Assumption and precondition:

- 128-bit SRv6 SIDs are allocated from an address block, sharing the common prefix.
- 128-bit SIDs follow the same format of Locator-Block : Locator-NodeID : FunctionID : Argument/Padding
- The redundant Locator-Block and Argument/Padding can be removed to reduce the size of SIDs.
- The different part of an SRv6 SID is the compressed SID(C-SID) of it.

|                           | (        | C-SID    |                  |          | 2-bit<br>-SID |    | 16-bit<br>C-SID | 16-bit<br>C-SID |
|---------------------------|----------|----------|------------------|----------|---------------|----|-----------------|-----------------|
|                           |          |          |                  |          |               | 1  |                 | <u> </u>        |
| Locator Block (A2:1::/64) | Node-ID1 | Func ID1 | Arg/Padding(opt) | Node-ID1 | Func ID1      |    | Node-ID1        | Func ID1        |
| Locator Block (A2:1::/64) | Node-ID2 | Func ID2 | Arg/Padding(opt) | Node-ID2 | Func ID2      |    | Node-ID2        | Func ID2        |
| Locator Block (A2:1::/64) | Node-ID3 | Func ID3 | Arg/Padding(opt) | Node-ID3 | Func ID3      |    | Node-ID3        | Func ID3        |
| Locator Block (A2:1::/64) | Node-ID4 | Func ID4 | Arg/Padding(opt) | Node-ID4 | Func ID4      | or | Node-ID4        | Func ID4        |
| Locator Block (A2:1::/64) | Node-ID5 | Func ID5 | Arg/Padding(opt) | Node-ID5 | Func ID5      |    | Node-ID5        | Func ID5        |
| Locator Block (A2:1::/64) | Node-ID6 | Func ID6 | Arg/Padding(opt) | Node-ID6 | Func ID6      |    | Node-ID6        | Func ID6        |



### REPLACE-C-SID: Replace C-SID by C-SIDs in Containers

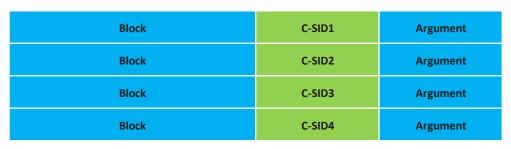
#### **REPLACE-C-SID Flavored Behaviors:**

- Update 32/16-bit C-SID from SRH[SL][DA.Arg.Index] to DA
- Note: DA.Arg.Index locates the C-SID in a C-SID container.

#### **Benefits:**

#### 1. Flexible Address Planning & Easy Deployment:

- 1. Flexible address planning, no need for a short address block.
- 2. No need to readdress if SRv6 has been deployed.


#### 2. Best Balance between Compression and Scalability

#### 1. 32-bit(Recommended)

- 1. Good Scalability for large networks. 16-20 bits Node ID, support up to 1M nodeID, support hierarchical address design.
- 2. Good compression, similar to MPLS (32-bit Label). 75 % Size off.

#### 2. 16-bit

- 1. Only for small networks, support 4K\*N NodeID, hard to use hierarchical address planning, hard to aggregate routes
- 2. Outstanding compression, better than MPLS(32-bit label)
- 3. Longer the C-SID sequence, better the compression.



128-bit SIDs in SRH

| Blo    | Block  |        | Argument |         |
|--------|--------|--------|----------|---------|
| C-SID1 | C-SID2 | C-SID3 | C-SID4   |         |
| C-SID1 | C-SID2 | C-SID3 | C-SID4   | 13 SIDs |
| C-SID1 | C-SID2 | C-SID3 | C-SID4   |         |

32-bit REPLACE-C-SID Flavor C-SIDs in SRH

|         | Argument |        |        | C-SID1 | Block  |        |        |        |
|---------|----------|--------|--------|--------|--------|--------|--------|--------|
|         | C-SID8   | C-SID7 | C-SID6 | C-SID5 | C-SID4 | C-SID3 | C-SID2 | C-SID1 |
| 25 SIDs | C-SID8   | C-SID7 | C-SID6 | C-SID5 | C-SID4 | C-SID3 | C-SID2 | C-SID1 |
|         | C-SID8   | C-SID7 | C-SID6 | C-SID5 | C-SID4 | C-SID3 | C-SID2 | C-SID1 |

16-bit REPLACE-C-SID Flavor C-SIDs in SRH



4 SIDs

### **NEXT-C-SID:** Update DA by shifting C-SIDs in DA

#### **NEXT-C-SID flavored behaviors:**

- Pop the 32/16-bit C-SID in DA, and left shift the next C-SID
- Note: Next C-SID is encoded in argument of the active SID in DA.

| Block | C-SID1 | Argument |
|-------|--------|----------|
| Block | C-SID2 | Argument |
| Block | C-SID3 | Argument |
| Block | C-SID4 | Argument |

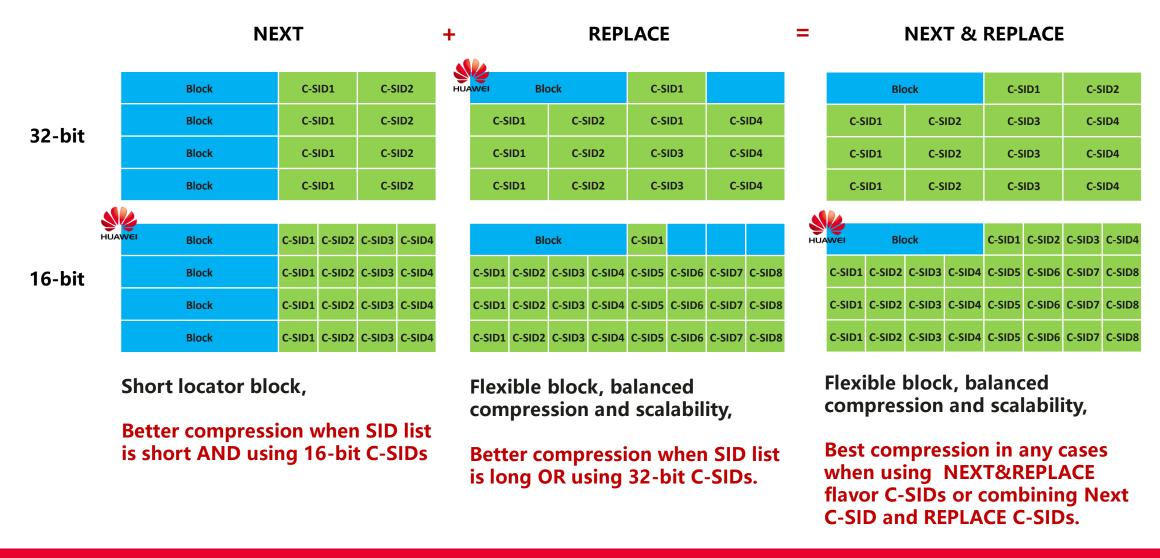
128-bit SIDs in SRH

#### **Benefits:**

- 1. Best Compression in 16-bit if SRH is not carried and Locator Block is very short.
  - 1. 32-bit
    - 1. Good Scalability for large networks, however,
    - **2. No recommended** since very few C-SIDs can be carried in a container.
  - 2. 16-bit (Recommended)
    - 1. Only for small networks, support 4K\*N NodeID, hard to use hierarchical address planning, hard to aggregate routes
    - 2. Outstanding compression, better than MPLS(32-bit label)
  - 3. Shorter the Locator Block, better the compression.

| Block | C-SID1 | C-SID2 |        |
|-------|--------|--------|--------|
| Block | C-SID1 | C-SID2 |        |
| Block | C-SID1 | C-SID2 | 8 SIDs |
| Block | C-SID1 | C-SID2 |        |

32-bit NEXT-C-SID Flavor C-SIDs in SRH


| Block | C-SID1 | C-SID2 | C-SID3 | C-SID4 |         |
|-------|--------|--------|--------|--------|---------|
| Block | C-SID1 | C-SID2 | C-SID3 | C-SID4 | 16 SIDs |
| Block | C-SID1 | C-SID2 | C-SID3 | C-SID4 | 10 3103 |
| Block | C-SID1 | C-SID2 | C-SID3 | C-SID4 |         |

16-bit NEXT-C-SID Flavor C-SIDs in SRH



4 SIDs

### **Huawei Implementations on SRv6 C-SID**



### Overview of C-SID Interop Test and Rapid Worldwide Deployment



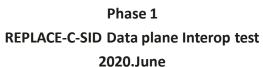






centec































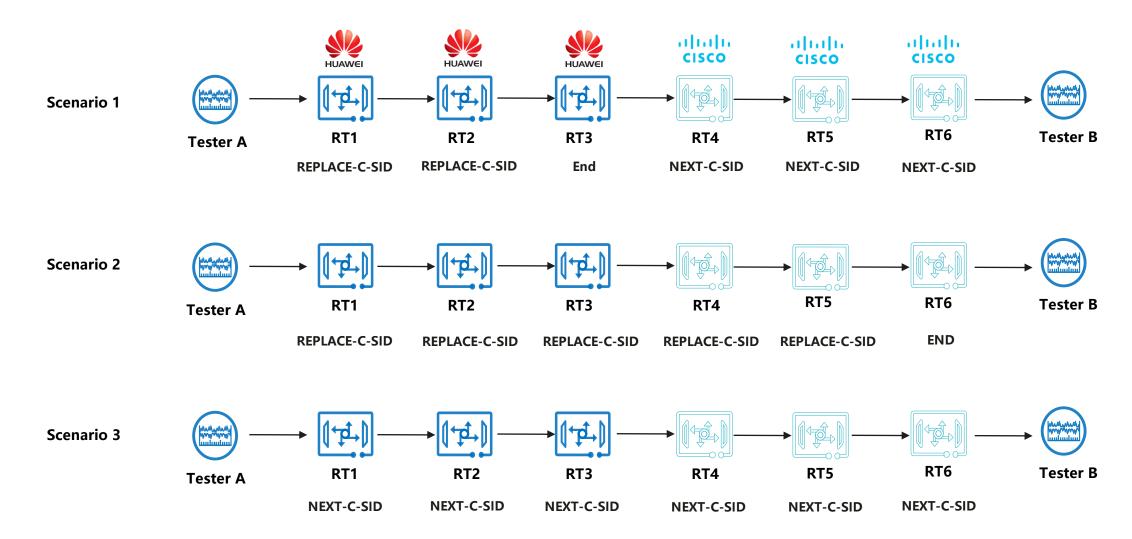

Phase 2
REPLACE-C-SID Control Plane Test
2020.July







Phase 4
Trial deployment
2020.NOV




Phase 5
Commercial Interop-Test and deployment
2022 -2023

Operator O,X,A,Z, U and T are also deploying C-SID.



### **C-SID Interoperability Test in CMCC in 2020**



#### Huawei and Cisco completed the interop-test of C-SID in CMCC's LAB in 2020

### **2022 IOH Completed C-SID Interoperability Test**

# Huawei & Cisco IOH SRv6 Interoperability Test Success

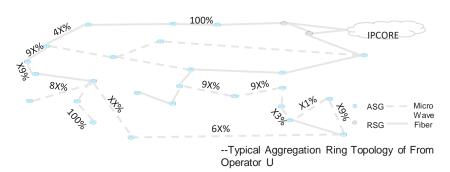


## SRv6 Brings Great Value to IOH Network







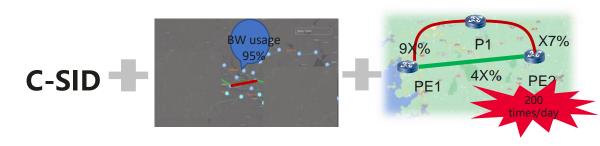



**Outstanding Contribution to Regional IPv6 Innovation** 



### **Deploy C-SID and NCE to Promote Rapid Traffic Growth**

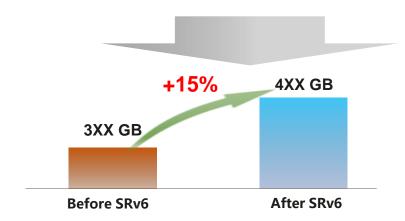
#### **High BW Usage and Insufficient Available Resources**




- · Many microwave links
- Long path: The forwarding path has 10+ hops on average.
- High BW utilization: 70% on average and over 90% in some cases

### Key Challenge: How to ensure smooth SRv6 upgrade without network-wide capacity expansion?

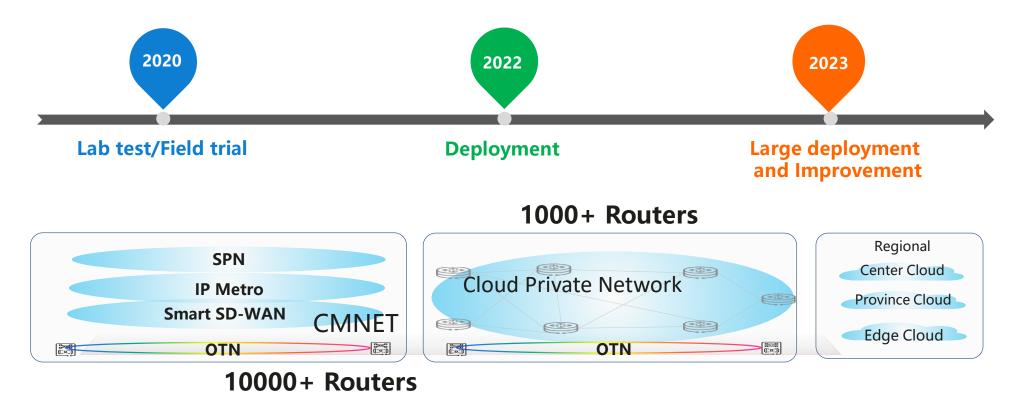



### REPLACE-C-SID + SDN + Precise expansion supports SRv6 successfully deployed



Action 1: Reduce the SRv6 header size with REPLACE-C-SID

**Action 2:** Identify network bottlenecks and perform precise expansion.


**Action 3:** Real-time automatic optimization ensuring optimal paths at any time.

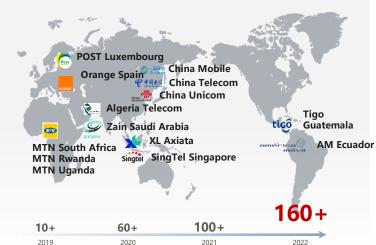


After SRv6 is deployed in area N Suppressed traffic is rapidly released



### **CMCC:** Leading the Deployments, Largest Deployment of C-SID




- CMCC led the interop test of C-SID between **10+** vendors in the past years, and had deployed G-SRv6/REPLACE-C-SID (Using Controller and SRv6 TE policy) on **1K+** (Multiple Vendors) routers in their Cloud Backbone network in 2022, reducing 50+% overhead of SRH.
- CMCC is deploying G-SRv6/REPLACE-C-SID on **10K+** (Multiple Vendors) routers in CMNET, which is the largest network using C-SID. The news will be released soon and experience will be shared. **Larger deployment is on the way.**

SRv6 with compression is ready for multi-vendor large-scale deployment in multi-area networks

#### Review of SRv6 Industry Status: Fast Deployment around the World.





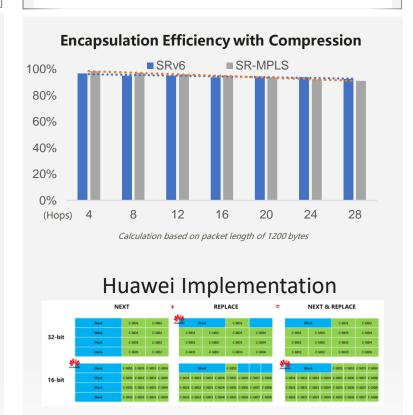


**Interoperability: Proved Inter-op between Vendors** 





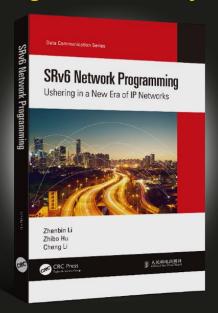









| Category           | Huawei   | Vendor C |  |  |  |
|--------------------|----------|----------|--|--|--|
| ISISv6/BGP         | <b>✓</b> | <b>/</b> |  |  |  |
| SRv6 EVPN          |          |          |  |  |  |
| SRv6 L3VPN         |          |          |  |  |  |
| SRv6 4PE/6PE       |          |          |  |  |  |
| SRv6 Ti-LFA        |          |          |  |  |  |
| SRv6 Ping/Trace    |          |          |  |  |  |
| Header Compression | <b>✓</b> |          |  |  |  |
|                    |          |          |  |  |  |

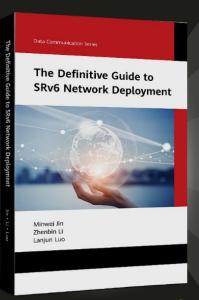

Efficiency: Similar/better with/than SR-MPLS



Huawei has implemented C-SID that can meet requirements of any networks



# SRv6 Network Programming Ushering in a New Era of IP Networks




#### **Compiled by Professional Teams**

- Members of the IETF Internet Architecture Board (IAB)
- Huawei senior SR and IGP protocol experts
- Huawei senior pre-research engineers and IP standards representatives

### The Definitive Guide to

#### **SRv6 Network Deployment**



### Coming soon...

#### **Project Experience Sharing**

- Complete collection of SRv6 theory and technologies
- Guide to SRv6 applications in innovative services
- Authentic stories about the SRv6 standardization process

#### **Deployment Experience Disseminating**

- · Network planning, design and deployment
- Network O&M and application analysis



